
TESL-EJ	21.2,	August	2017	 Stevens & Verschoor/Internet	 1	

The	Electronic	Journal	for	English	as	a	Second	Language	

August	2017	–	Volume	21,	Number	2	

	Coding	and	English	Language	Teaching	
* *	On	the	Internet	*	*	*

Vance	Stevens	
Higher	Colleges	of	Technology,	CERT,	KBZAC,	Al	Ain,	UAE	
<vancestev@gmail.com>	

Jennifer	Verschoor	
St	George´s	College	North,	Buenos	Aires,	Argentina	

Vance	reflects	on	20th	century	learning,	as	an	early	adopter	and	early	adaptor	

When	I	was	studying	my	MA/ESL	in	Hawaii	in	the	early	1980s	and	trying	to	get	my	head	
around	how	people	learn	languages,	I	was	struck	by	something	Earl	Stevick	said	in	one	
of	his	books,	in	a	chapter	on	games	in	language	learning,	
The	quality	of	the	learning	that	takes	place	when	we	focus	our	attention	only	on	the	items	
to	be	learned	is	different	from	(and	probably	inferior	to)	the	quality	of	the	learning	that	is	
incidental	to	something	else	that	we	are	trying	to	do	(Stevick,	1982;	pp.131-132).	

In	 my	 career	 as	 an	 English	 teacher,	 I’ve	 always	 been	 on	 the	 lookout	 for	 tasks	 with	
incidental	 language	 learning	 outcomes.	 In	 my	 first	 job	 after	 earning	 my	 MA	 at	 the	
University	 of	 Hawaii,	 Manoa,	 I	 was	 responsible	 for	 planning	 and	 implementing	 a	
curriculum	 for	 teaching	 ESL	 to	 foreign	 students	 at	 Hawaii	 Preparatory	 Academy,	 a	
boarding	school	on	the	Big	Island	of	Hawaii.	There	were	only	a	few	ESL	students,	mostly	
Japanese	 and	 Chinese,	 and	 they	 tended	 to	 keep	 to	 themselves	 and	 speak	 together	 in	
their	 language	 rather	 than	mix	 easily	with	 the	predominantly	native	English	 speaking	
students	at	the	academy.	I	was	an	early	adopter	of	CALL	for	language	learning,	and	tried	
to	use	computers	with	my	students	to	the	extent	possible.	This	was	in	1983,	at	the	cusp	
of	 the	 age	 of	 ubiquitous	 personal	 computing,	 so	most	 student	 computing	 at	HPA	was	
done	at	 terminals	 connected	 to	 a	mainframe	computer	 in	 a	 single	 room	where	all	 the	
students	 went	 when	 they	 needed	 to	 compute	 or	 print	 assignments.	When	 I	 gave	my	
foreign	students	writing	assignments	to	be	done	at	those	computers,	I	noticed	that	while	
they	were	there	 in	the	room	with	the	other	students,	sitting	randomly	next	to	them	at	
the	 available	 terminals,	 they	would	 often	 have	 questions,	 not	 usually	 about	 language,	
but	more	often	about	how	you	got	 the	mainframe	to	do	 this	or	 that,	 format	or	print	a	
document,	for	example.	My	ESL	students	mentioned	to	me	that	such	moments	were	rare	
opportunities	 to	 interact	naturally	but	meaningfully	with	 the	native	speaking	students	
there.	I	had	sent	them	to	the	computer	lab	to	write	sentences	and	paragraphs,	and	they	

TESL-EJ	21.2,	August	2017	 Stevens & Verschoor/Internet 2	

had	 come	 away	 having	 had	 authentic	 communication	 experiences	 with	 other	 English	
speakers	that	hopefully	led	to	more	such	opportunities	in	other	contexts.	This	could	only	
have	improved	their	 language	development	in	ways	that	I	could	not	have	arranged	for	
them	if	I	had	tried	to	develop	assignments	to	focus	on	that.	
I	was	also	an	early	adaptor	of	CALL	programming	at	HPA.	I	had	succeeded	in	budgeting	
my	program	for	a	lab	with	a	few	Apple	II	computers	but	I	was	surprised	to	be	told	when	
the	 computers	 arrived	 that	 there	 were	 no	 further	 funds	 for	 software	 on	 top	 of	 my	
request	to	buy	hardware.	Personal	computers	had	only	recently	been	invented,	I	hadn’t	
realized	I’d	need	a	separate	budget	for	software	as	well,	and	it	had	not	been	obvious	to	
anyone	else	at	HPA	at	the	time	that	such	hardware	was	of	little	use	without	software.	
Fortunately,	in	these	early	days	of	personal	computing	there	was	a	budding	community	
of	hobbyists	who	were	writing	programs	on	Apple	II	for	simple	games	and	distributing	
them	 in	 the	 public	 domain.	My	Apple	 Club	 in	Honolulu	 held	 swap	meets	 occasionally	
where	such	programs	were	exchanged	on	five-and-a-quarter	inch	floppy	disks,	and	I	had	
a	 trove	 of	 those	 I	 had	 brought	 over	 with	 me	 to	 the	 Big	 Island.	 The	 programs	 were	
written	 in	 Basic	 and	 the	 code	 was	 visible	 and	 could	 easily	 be	 changed.	 A	 lot	 of	 the	
programs	were	word	games	or	cloze	programs	where	I	could	simply	change	the	text	in	
the	program	 interface	or	 items	 in	 the	databases,	while	 keeping	 intact	 the	 subroutines	
that	did	the	actual	work,	to	produce	my	first	CALL	software	programs	(Stevens,	1985).	
This	was	one	of	my	first	forays	into	coding.	
There	was	a	popular	commercial	game	program	at	the	time	called	Mystery	House	whose	
developers	 had	 decided	 to	 donate	 it	 to	 the	 public	 domain.	 Armando	 Baltra	 had	 been	
promoting	 use	 of	 this	 game	 for	 language	 learning	 in	 conference	 presentations	 and	
articles	at	about	 this	 time	(e.g,	Baltra,	1984).	 I	acquired	 the	public	domain	version	 for	
my	 lab	 and	 encouraged	my	 students	 to	 play	 it.	 They	 communicated	with	 the	 game	 in	
subject/verb	utterances	such	as	“go	west”	or	“light	match.”	The	game	used	stick-figure	
graphics	 but	 somehow	 managed	 to	 give	 the	 students	 the	 impression	 they	 were	
exploring	 a	 house	 and	 meeting	 people	 there	 (but	 then	 the	 characters	 in	 the	 house	
started	turning	up	dead,	and	the	object	of	 the	game	was	to	 find	the	killer	 from	among	
those	 remaining	 in	 the	house	before	 the	killer	 found	you).	The	 students	had	explored	
almost	everywhere	they	could	until	one	of	 them	issued	a	command,	quite	by	accident,	
that	caused	a	wall	to	move	and	revealed	passages	behind	the	walls.	This	stirred	very	real	
excitement	 in	my	classroom,	which	 in	 turn	 led	 to	communication	with	and	among	 the	
students	that	took	on	greater	urgency	and	motivation	than	any	I	had	been	able	to	elicit	
in	any	English	class	before	then.	

This	was	my	first	palpable	awareness	of	the	power	computers	have	to	create	situations	
in	which	students	have	genuine	needs	 to	communicate	on	 topics	not	 teacher-directed,	
but	 teacher-facilitated.	 Since	 then	 I	 have	been	 exploring	 the	benefits	 of	 serendipity	 in	
language	classes,	and	the	importance	of	promoting	chaos	as	a	way	of	getting	students	to	
discover	solutions	 to	problems	they	were	motivated	 to	solve,	and	 to	communicate	 the	
processes	involved	in	those	solutions	to	others	in	the	target	language.	

TESL-EJ	21.2,	August	2017	 Stevens & Verschoor/Internet 3	

CALL	and	LACL	

At	 a	 more	 recent	 job	 this	 century,	 where	 I	 was	 teaching	 computing	 at	 Petroleum	
Institute	 in	 Abu	 Dhabi,	 we	 had	 a	 curriculum	 that	 focused	 largely	 on	Microsoft	 Office	
applications,	but	I	managed	to	convince	my	colleagues	to	allow	me	to	create	some	units	
teaching	HTML,	 in	which	 the	 students	 coded	 their	own	web	pages.	 Since	 the	 students	
were	non-native	English	speaking	engineering	students,	I	called	what	I	was	doing	LACL,	
language-assisted	 computer	 learning,	 a	 play	 on	 the	 better-known	 acronym	 CALL	
(computer-assisted	language	learning).	My	colleagues	tolerated	my	contributions	to	the	
program	 for	 a	while	 but	 eventually	 over-ruled	me	 since	 they	 didn’t	 feel	 they	 or	 their	
students	needed	to	know	the	code	that	underpinned	most	of	the	content	on	the	Internet.	
Their	attitude	was	that	we	all	have	browsers	for	that,	and	if	you	need	to	produce	code,	
you	 can	 usually	 find	 an	 HTML	 editor	 to	 produce	 it	 for	 you.	 However,	 sites	 such	 as	
PBWorks,	Wikispaces,	 or	 Blogger,	 have	 underlying	 HTML	 code	 which	 can	 be	 used	 to	
troubleshoot	 problems	 when	 the	 WYSIWYG	 interfaces	 don’t	 work	 as	 expected,	 as	
sometimes	happens.	As	Dudeney,	Hockly,	&	Pegrum	put	it	(2013,	p.162):	

Knowing	how	to	recognise	and	change	elements	 in	coding	 languages	allows	us	 to	
escape	 the	 constraints	of	 templates,	 and	gives	us	greater	 control	 over	 the	 format	
and	 appearance	 of	 some	 online	 communication.	 A	 basic	 familiarity	 with	 the	
common	coding	 language	HTML	(HyperText	Markup	Language),	which	underpins	
most	webpages,	including	blogs,	wikis,	etc.,	is	a	good	place	to	start.	

Having	recourse	to	the	underlying	code,	and	knowing	enough	about	coding	to	be	able	to	
tame	a	WYSIWYG	editor,	can	be	empowering,	satisfying,	and	save	a	lot	of	time	trying	to	
tweak	an	interface	that	will	not	bend	to	your	wishes	until	you	get	under	the	hood	and	
see	what	wires	 are	 crossed	 there.	 Just	wanting	 to	 know	how	 to	 tweak	 code	 can	 pose	
seemingly	 wicked	 problems	 that	 networking	 within	 a	 community	 commonly	 helps	
resolve.	 Knowledge	 gaps	 are	 venerable	 language	 teaching	 ploys,	 and	 as	 with	 my	
students	at	HPA,	in	an	environment	where	help	is	available	from	asking	others,	a	post	on	
a	 social	media	 site	 can	 elicit	 help	 and	 start	 conversations.	 If	 this	 post	 is	 from	 a	 non-
native	speaker	in	a	target	language,	but	is	answered	by	a	native	speaker	or	even	another	
NNS	 who	 uses	 the	 target	 language	 as	 the	 lingua	 franca	 for	 the	 discussion,	 then	
authenticity	 of	 purpose	 and	 motivation	 to	 learn	 converge	 with	 availability	 of	
interlocutors,	all	catalysts	for	success	in	learning	a	foreign	language.	

We	see	this	dynamic	play	out	not	only	in	the	examples	above	but	in	gaming	communities	
where	NNS	players	achieve	fluency	in	English	while	playing	with	others	in	games	such	
as	 Minecraft,	 all	 the	 while	 speaking	 in	 English.	 They	 typically	 engage	 in	 a	 host	 of	
peripheral	 behaviors	 such	 as	 researching	 tips	 and	 ‘cheats’	 on	wikis	 and	 YouTube	 (in	
English),	recording	themselves	communicating	in	English	with	others	while	playing	the	
game,	 and	 in	 posting	 their	 own	 tips	 and	 how-to	 videos	 on	 YouTube	 (e.g.,	 Smolčec,	
Smolčec,	and	Stevens,	2014).	So	we	see	that	this	combination	of	ingredients	for	success	
in	 language	 learning	 —	 authenticity	 of	 purpose	 and	 motivation	 to	 learn	 plus	 an	
availability	of	 interlocutors	—	applies	not	only	in	the	20th	century	language	learning	I	
was	 facilitating	 in	 the	 mid-80’s	 at	 HPA,	 but	 even	 more	 so	 this	 far	 into	 our	 present	
millennium.	

TESL-EJ	21.2,	August	2017	 Stevens & Verschoor/Internet 4	

21st	century	learning	

A	 common	 catch	 phrase	 for	 this	 is	 21st	 century	 learning.	 As	Rich	 (2010)	 puts	 it,	 “the	
term	‘21st-century	skills’	is	generally	used	to	refer	to	certain	core	competencies	such	as	
collaboration,	 digital	 literacy,	 critical	 thinking,	 and	 problem-solving	 that	 advocates	
believe	schools	need	to	teach	to	help	students	thrive	in	today’s	world.”	In	an	era	where	
schools	realize	they	are	training	students	to	excel	in	jobs	that	haven’t	been	invented	yet,	
employers	are	 looking	 for	students	who	can	 learn	on	the	 job,	and	who	have	a	skill-set	
that	includes	the	three	C’s:	creativity,	communication,	and	collaboration.	These	skills	are	
needed	 to	 enable	 employees	 to	 adapt	 to	 dynamically	 shifting	 work	 environments,	
communicate	with	others	not	only	in	the	immediate	environment	but	across	networks,	
and	in	so	doing	absorb	on-the-job	training	through	collaboration	with	others.	To	these	
C’s	others,	for	example,	Thoughtful	Learning	(2017)	add	a	4th	C	for	critical	thinking,	as	
well	 as	 the	 literacy	 skills	 of	 information,	 media,	 and	 technology	 literacies.	 World	
Economic	Forum	(2015,	p.	3)	characterise	this	in	an	infographic	giving	a	comprehensive	
breakdown	of	21st	Century	Skills,	as	quoted	in	Table	1.	

Table	1.	21st	Century	Skills	

Foundational	literacies	
How	students	apply	core	
skills	to	everyday	tasks	

Competencies	
How	students	approach	
complex	challenges	

Character	qualities	
How	students	approach	their	
changing	environment	

Literacy	 Critical	thinking	/	problem	
solving	

Curiosity	

Numeracy	 Creativity	 Initiative	

Scientific	literacy	 Communication	 Persistence	/	grit	

ICT	literacy	 Collaboration	 Adaptability	

Financial	literacy	 Leadership	

Cultural	and	civic	literacy	 Social	and	cultural	
awareness	

Lifelong	learning	
One	 driver	 of	 the	 attention	 to	 these	 so-called	 21st	 century	 learning	 skills	 is	 what	
employers	say	they	are	looking	for	in	job	applicants	nowadays.	Scott	(2015)	conducted	
an	insightful	meta	analysis	into	21st	century	job	skills	sought	by	employers.	Among	the	
studies	cited	is	one	where	Wagner	(2010)	and	the	Change	Leadership	Group	at	Harvard	
University	 conducted	 “several	 hundred	 interviews	 with	 business,	 nonprofit	 and	
education	leaders”	which	led	them	to	conclude	that,	from	an	employer’s	point	of	view:		

students	need	seven	survival	skills	to	be	prepared	for	twenty-first	century	life,	work	
and	citizenship:	
• Critical	thinking	and	problem	solving

TESL-EJ	21.2,	August	2017	 Stevens & Verschoor/Internet 5	

• Collaboration	and	leadership

• Agility	and	adaptability

• Initiative	and	entrepreneurialism

• Effective	oral	and	written	communication

• Accessing	and	analysing	information

• Curiosity	and	imagination	[1]

In	her	meta	analysis	Scott	also	cites	a	study	by	a	consortium	comprising	the	Conference	
Board,	et	al.	 (2006,	p.9)	who	 jointly	surveyed	over	400	employers	across	 the	USA	and	
found	that	the	“applied	skills”	mentioned	above:	

trump	 basic	 knowledge	 and	 skills,	 such	 as	 Reading	 Comprehension	 and	
Mathematics.	In	other	words,	while	the	“three	Rs”	are	still	fundamental	to	any	new	
workforce	 entrant’s	 ability	 to	 do	 the	 job,	 employers	 emphasize	 that	 applied	 skills	
like	Teamwork/Collaboration	and	Critical	Thinking	are	“very	important”	to	success	
at	work.	

The	Conference	Board	report	continues,	“when	asked	to	assess	new	workforce	entrants,	
employers	 report	 that	 many	 of	 the	 new	 entrants	 lack	 skills	 essential	 to	 job	 success”	
(p.10).	So	 it	 is	apparent	 that	 teachers	who	promote	skills	 that	will	 leverage	success	 in	
the	world	at	large	in	the	course	of	teaching	their	subject	to	their	students	are	doing	their	
students	as	well	as	themselves	a	valuable	service.	

Coding	and	21st	century	learning	
According	 to	Dudeney,	Hockly,	 and	Pegrum	 (2013)	 coding	 is	 a	 deeper	 skill	 subsumed	
under	 the	 four	 main	 digital	 literacies	 of	 language,	 connections,	 information,	 and	
(re)design.	Where	should	English	 teachers	start	 if	 they	are	planning	 to	 teach	 this	new	
kind	of	literacy?	Let´s	start	by	understanding	the	concept	of	coding.	

Coders	or	programmers	are	people	who	write	 the	programmes	behind	everything	we	
see	 and	 do	 on	 a	 computer.	 Most	 of	 our	 students	 spend	 several	 hours	 playing	 online	
games,	 but	 few	know	how	 to	 create	 a	 game.	 Learning	 to	 code	 encourages	 students	 to	
become	 creators,	 not	 just	 consumers	 of	 the	 technology	 they	 use.	 Clare	 Sutcliffe,	 co-
founder	 of	 Code	 Club	 (https://www.codeclub.org.uk/),	 a	 UK	 network	 of	 educators	
running	coding	clubs	for	students	aged	9-13,	was	quoted	in	Morrison	(2013)	as	saying	
that	teaching	coding:	

has	the	potential	to	bring	about	a	fundamental	shift	in	the	way	we	view	technology,	
turning	 us	 from	 passive	 consumers	 into	 active	 producers.	 “There	 is	 a	 massive	
difference	between	consuming	content	and	being	able	 to	create	 it,”	Sutcliffe	adds.	
“It	is	important	to	have	agency	over	the	tools	you	are	using.”	

When	children,	or	adults	for	that	matter,	learn	to	code,	it	helps	them	to	develop	essential	
skills	 such	 as	 problem	 solving,	 logic	 and	 critical	 thinking.	 Through	 coding,	we	 realize	
that	 there’s	 often	more	 than	 one	way	 to	 solve	 a	 problem,	 and	 that	 simpler	 and	more	
efficient	 solutions	 are	 often	 better.	 Analysing	 and	 discussing	 the	 processes	 of	 critical	
thinking	and	problem	solving	can	result	in	meaningful	language	practice.	

http://www.tesl-ej.org/wordpress/issues/volume21/ej82/ej82int/#footnote1
https://www.codeclub.org.uk/

TESL-EJ	21.2,	August	2017	 Stevens & Verschoor/Internet 6	

Coding	and	English	teaching	

Though	 this	 paradigm	 applies	 across	 all	 aspects	 of	 the	 curriculum,	 the	 focus	 of	 this	
article	 is	 on	how	 it	 applies	 to	English	 teaching,	 and	more	 specifically,	 on	how	English	
teaching	can	be	done	 in	 conjunction	with	encouraging	 students	 to	work	with	 code,	 so	
that	between	the	two,	they	inculcate	aspects	of	the	21st	century	skills	mentioned	here	
while	 promoting	 language	 development.	 More	 than	 just	 an	 idea,	 this	 is	 an	 actual	
business	model	 for	 Bucksmore	 Education	 in	 UK,	 which	 offers	 summer	 coding	 classes	
where	students	aged	13-16	can	 take	15	hours	per	week	 in	English	and	another	7.5	 in	
coding	 classes,	 and	 take	 a	 Raspberry	 Pi	 home	 with	 them	 at	 the	 end	 of	 the	
course,	http://www.bucksmore.com/courses/computer-coding-summer-school/.	
Scratch,	 a	 free	 object-oriented	 programming	 language	 developed	 at	MIT,	 is	 a	 popular	
tool	 of	 choice	 for	 teachers	 wishing	 to	 integrate	 coding	 into	 their	 language	 learning	
lessons.	Writing	in	Slate,	Berdik	(2015)	quotes	ScratchEd	founder	Karen	Brennan,	who	
“describes	Scratch	as	simply	another	way	to	express	learning	and	creativity.	‘Instead	of	
writing	an	essay	or	doing	a	PowerPoint	presentation,	for	a	class,	you	can	use	Scratch	to	
create	your	own	interactive	media,’	she	said.”	

Joan	Brown	is	an	English	teacher	who	uses	Scratch	with	her	students.	In	Brown	(2016)	
she	 presents	 a	 rationale	 for,	 as	 her	 blog	 post	 title	 puts	 it,	 “Coding	 in	 English	 Class	 –	
Perfect	Pair”.	In	her	words:	

we	rarely	think	of	coding	and	English	going	hand	in	hand,	yet	as	I	was	instructing	
the	 students,	 I	 was	 amazed	 at	 the	 similarities	 I	 found	…	 So	 similar	 to	writing	 in	
many	ways.	You	can’t	start	writing	and	have	no	direction.	

Coding,	she	believes,	teaches	the	concept	of	planning	in	a	way	that	might	carry	over	into	
writing.	She	further	points	out	that	programmers	have	“their	own	grammar	rules	called	
syntax.	That	syntax	determines	whether	the	next	programmer	will	be	able	 to	read	the	
code	as	well	as	whether	the	code	will	run	correctly.	Such	a	wonderful	analogy	to	actual	
grammar.”	

teaching	 the	 logic	 behind	 conditional	 statements	 is	 the	 art	 of	 writing	 a	 great	
comparative	essay	or	a	great	reinforcement	to	so	many	subjective	decisions	about	
literature.	The	If-Then-Else	block	requires	students	to	weigh	two	possible	scenarios	
and	never	 leave	 anything	 out.	 There	 are	 so	many	applications	 to	 using	 that	 flow	
chart	concept	in	English	class.	

Alan	 Cohen	 (2017)	 uses	 Scratch	 in	 ESL	 classes	 by	 getting	 students	 to	 code	 short	
conversations.	Noting	that	Scratch	is	easy	to	learn,	and	that	its	drag	and	drop	interface	
doesn’t	 create	 spelling	 and	 syntax	 barriers	 in	 the	 code	 they	 create,	 Cohen	 has	 his	
students	

code	 dialogue	 that	 cartoon-like	 characters	 display	 in	 speech	 bubbles	 ….	 As	 they	
discuss	 and	 plan	 their	 story,	 the	 teacher	 listens	 to	 the	 groups	 and	 corrects	
pronunciation	 where	 needed.	 The	 students	 then	 tell	 the	 class	 what	 their	 story	 is	
about	 and	 run	 their	 program.	 The	 class	 and	 teacher	 can	 correct	 any	 spelling	 or	
grammar	 mistakes.	 The	 coding	 exercises	 provide	 other	 benefits.	 They	 teach	
planning	and	logical	thinking.	

http://www.bucksmore.com/courses/computer-coding-summer-school/

TESL-EJ	21.2,	August	2017	 Stevens & Verschoor/Internet 7	

Laura	 Bradley	 (2016)	 uses	 tutorials	 from	 Code.org	 (https://code.org/)	 in	 her	 English	
classes.	She	likes	the	fact	that	she	doesn’t	have	to	be	an	expert	in	code	and	“the	tutorials	
differentiate	the	experience	for	my	students,	some	of	whom	have	been	learning	to	code	
on	their	own	via	Khan	Academy,	and	others	who	have	never	heard	of	coding.	Best	of	all?	
The	 online	 tutorials	 are	 all	 free,”	 and	 remain	 online	 beyond	 the	 end	 of	 the	 MOOC	
sessions	for	which	they	were	created.	

Having	taught	her	students	the	basics	of	coding	in	Scratch,	Bradley	reports	on	a	follow-
on	activity	from	an	assignment	to	write	novels	in	English	class.	The	follow-on	was	to:	

create	a	computer	game	based	on	the	novel	you	just	wrote	…	Having	just	invested	
over	a	month	into	that	novel,	they	knew	their	characters,	plots,	and	conflicts	inside	
and	 out.	 I	 hoped	 that	 the	 chance	 to	 create	 a	 game	 from	 that	 story	would	 honor	
their	writing	and	stretch	some	different	brain	muscles,	while	also	giving	them	the	
basis	 for	 a	 richer	 game	 than	 they	 might	 create	 if	 it	 didn’t	 come	 from	 a	 well-
developed	story.	

She	continues:	
There	is	so	much	about	this	project	that	mirrors	the	writing	process:	in	addition	to	
creating	a	story,	they	brainstormed	and	outlined	their	games,	drafted	them,	tested	
them,	found	errors	to	fix,	drafted	some	more,	tested	some	more,	revised	some	more.	
And	eventually	they	will	publish	their	games	to	an	audience	as	big	as	the	internet	
(via	 the	 Scratch	 site),	where	 this	 creative	 gaming	 community	 can	 play,	 rate,	 and	
give	them	feedback.	And	if	they	didn’t	proofread	their	game	carefully?	It	won’t	run.	

Bradley	 (2017)	 reflects	 on	 this	 project	 and	 concludes	 that	 “although	 coding	may	 not	
seem	 to	 fit	 in	 an	 English	 class	 …	 coding	 is	 a	 language	 with	 its	 own	 vocabulary,	 and	
proofreading	one’s	work	is	critical.”	

So	why	would	 I	 take	 three	weeks	 out	 of	my	English	 curriculum	 to	 let	my	 students	
learn	 the	 basics	 of	 computer	 coding?	 Why	 should	 teachers	 of	 science,	 history,	 or	
math	do	the	same?	…	because	coding:	

• builds	problem-solving	skills	and	logical	thinking

• opens	new	avenues	to	creativity

• gives	students	a	foundation	for	success	in	21st	century	careers

• reinforces	our	own	curriculum	through	a	different	lens

• helps	students	understand	how	their	own	technology	works

• opens	their	eyes	to	potential	careers

From	 a	 student’s	 perspective,	 a	 native	 Farsi	 speaker	with	 an	MA	 in	 English	 language	
living	in	Finland	takes	a	CLIL	approach	to	learning	coding	and	English	at	the	same	time.	
Without	mentioning	CLIL,	Omid	(2014)	argues	 that	his	best	way	 to	 learn	English	 is	 to	
learn	 it	 in	 conjunction	 with	 something	 else,	 such	 as	 programming	 languages.	 Omid	
points	out	that	if	you	want	to	learn	coding,	then	doing	it	in	the	context	of	ESOL	is	a	good	
way	 to	 leverage	 the	 benefits	 of	 both	 subjects.	 He	 suggests	 starting	 with	
Codeacademy,	https://www.codecademy.com/.	In	his	words:	

https://code.org/
https://www.codecademy.com/

TESL-EJ	21.2,	August	2017	 Stevens & Verschoor/Internet 8	

Codecademy	courses	 are	 good	 for	 improving	 your	 reading	 and	 comprehension	
skills	because,	basically,	you	read	and	follow	instructions,	which	are	all	written	 in	
English.	You	can	also	practice	your	writing	 skills	by	 joining	 the	discussions	 in	 the	
forums.	 Also,	 subscribe	 to	 their	 free	 email	 newsletter	 where	 you	 will	 read	 about	
people	 who	 have	 done	 something	 notable	 using	 what	 they	 have	 learned	
from	Codecademy	courses.	

This	echoes	what	Smolčec,	Smolčec,	and	Stevens	(2014)	discovered,	as	mentioned	above	
with	respect	to	Minecraft,	when	the	other	thing	you	are	trying	to	learn	has	a	wealth	of	
materials	and	tutorials	written	about	it	in	English.	

Two	 of	 that	 article’s	 co-authors,	 Marijana	 and	 (her	 son)	 Filip	 Smolčec,	 have	 been	
participating	 for	 the	 past	 three	 years	 in	 EVO	 Minecraft	 MOOC,	 an	 Electronic	 Village	
Online	 session	meant	 to	 engage	educators	 in	Minecraft	 so	 that	 they	 can	 in	 turn	use	 it	
with	 their	 students	 (Stevens,	 2017).	 One	 of	 the	 moderators	 of	 that	 session,	 Mircea	
Patrascu,	has	been	showing	his	EVO	Minecraft	MOOC	participant	peers	how	to	build	in	
Minecraft	with	 script,	while	 in	Romania,	 he	 teaches	 children	 to	 code,	 and	has	written	
instructions	 for	 connecting	 Scratch	 to	 Minecraft	 and	 ScriptCraft	 (Petrascu,	 2016).	 As	
Missio	 (2015)	 points	 out,	 Minecraft	 “is	 also	 now	 part	 of	 Hour	 of	 Code,	 a	 worldwide	
initiative	that	aims	to	teach	kids	computer	programming”	(https://code.org/minecraft).	
Bringing	teachers	up	to	speed	on	coding	

Morrison	(2013)	points	out	that	“if	coding	is	to	become	embedded	in	schools	it	is	going	
to	 take	 a	massive	 effort	 in	 terms	 of	 teacher-training.”	 Morrison	 also	 interviews	 Code	
Club	teacher	Laura	Kirsop,	who,	noting	lack	of	such	training	in	her	own	education,	says	
“there	is	a	long	way	to	go	before	teachers	feel	confident	enough	to	teach	these	skills.”	
Claire	 Siskin	 has	 been	 promoting	 coding	 for	 teachers	 of	 English	 to	 speakers	 of	 other	
languages	 for	 a	 long	 time.	 Her	 web	 page	 at	http://www.edvista.com/claire/rev/	
compiles	 dozens	 of	 links	 where	 teachers	 can	 get	 resources	 on	 LiveCode,	 a	 scripting	
language	similar	to	Hypercard	on	Mac,	but	which	runs	on	iOS,	Android,	Windows,	Mac,	
Linux,	Server	&	HTML5.	Recently	she	 facilitated	a	project	whereby	English	 teachers	at	
Daffodil	University	in	Bangladesh	used	LiveCode	to	create	an	app	for	smartphone	called	
BrimmEng,	 “designed	 to	 provide	English	 language	 practice	 outside	 the	 classroom	and	
reinforce	 learning	 in	 the	 classroom,”	 (Siskin,	 2107).	 Her	 project	 demonstrates	 the	
willingness	 and	 ability	 of	 English	 teachers	 in	 developing	 nations	 to	 learn	 a	 coding	
language	 from	 the	 start	 and	 use	 it	 to	 create	 their	 own	 apps	 for	 language	 learning	
(Stevens,	2016).	

In	 September	 2015	 New	 York	 city	 mayor	 Bill	 de	 Blasio	 announced	 a	 program	 for	
providing	every	public	school	student	in	New	York	City	with	computer	science	courses	
at	 every	 grade	 level	 by	 2025,	 and	 allocated	 $80	 million	 in	 funds	 to	 providing	 5,000	
teachers	with	computer	science	training	in	order	to	bring	that	many	existing	staff	up	to	
speed	with	the	initiative.	In	an	article	in	the	New	Yorker	entitled	“Can	an	English	Teacher	
Learn	to	Code?”	Morais	(2015)	introduces	us	to	Meredith	Towne,	a	theater	and	English	
teacher,	and	beneficiary	of	this	program.	

“The	 language	 in	 Scratch	 is	 very	 similar	 to	 theatre	 language,”	 she	 said.	 …	 She	
devised	 an	 assignment	 in	 which	 students	 use	 Scratch	 to	 direct	 staging—that	 is,	

https://code.org/minecraft
http://www.edvista.com/claire/rev/

TESL-EJ	21.2,	August	2017	 Stevens & Verschoor/Internet 9	

program	their	fellow-actors….	Her	ninth	graders	have	been	tinkering	with	Scratch	
for	a	couple	of	months	now.	“They’re	already	better	at	it	than	me,”	she	said.	

The	observations	above	address	a	major	concern	of	humanities	teachers	over	whether	
they	 can	 learn	 coding	 themselves	 well	 enough	 to	 use	 it	 as	 a	 basis	 for	 class	 projects.	
Karen	 Brennan’s	 ScratchED	 is	 a	 community	 of	 learners	 and	 teachers	 who	 help	 each	
other	overcome	such	hurdles.	She	has	studied	the	strategies	of	a	subset	of	students	who	
work	on	their	own	more	than	they	rely	on	support	from	the	community	to	debug	their	
programs.	 She	 uses	 that	 knowledge	 to	 help	 teachers	with	 “getting	 unstuck,”	 the	 term	
Brennan	(2014)	uses	in	her	talk	on	the	HarvardEducation	YouTube	channel,	where	she	
assures	teachers	that	“students	don’t	need	you	in	the	way	you	think	they	need	you.	They	
don’t	 need	 you	 to	 solve	 every	 problem.”	 Instead	 teachers	 should	 “embrace	 the	
vulnerability	 of	 not	 knowing”	 and	 let	 students	 understand	 the	 value	 of	 learning	 in	
collaboration	with	the	teacher.	

Where	can	you	and	your	students	learn	coding?	

In	the	context	of	ELT	there	are	several	ways	to	start	integrating	coding	as	a	new	kind	of	
literacy.	Most	coding	websites	are	easy	to	follow	and	they	provide	clear	tutorials	on	how	
to	get	started,	so	neither	students	nor	English	language	teachers	need	to	have	previous	
knowledge	of	coding.	
Let´s	 begin	 by	 exploring	 the	 apps,	 programs	 and	 websites	 to	 bring	 coding	 into	 the	
classroom	mentioned	by	the	English	teachers	whose	voices	emerge	from	earlier	in	this	
article.	 These	 teachers	 have	 converged	 on	 the	 following	 Web	 projects	 in	 particular:	
Code.org,	Hour	of	Code,	Code	Club,	Scratch,	ScratchEd,	and	Codeacademy.	

Code.org	and	Hour	of	Code	
Getting	started	with	https://code.org	is	very	simple	for	teachers.	The	main	objective	of	
this	website	is	to	teach	coding	using	blocks	in	a	simple	and	entertaining	way.	
Teachers	 will	 find	 a	 variety	 of	 coding	 activities	 divided	 into	 levels	 ranging	 from	 K-5	
through	6-12	and	University+.	The	site	 is	divided	 into	 the	categories	 (1)	Students,	 (2)	
Educators,	 (3)	Hour	of	Code,	 and	 (4)	Get	 involved.	A	 click	on	 “Students	 /	Explore	our	
courses”	takes	you	to	this	page:	https://studio.code.org/courses.	

Here	you	will	find	a	full	course	catalog	divided	into	the	three	audience	levels	(K-5,	6-12,	
and	university),	plus	the	Hour	of	Code	option	designed	to	help	students	(or	anyone,	try	
it	yourself!)	start	learning	how	to	code,	or	improve	their	coding	skills,	in	only	one-hour	
chunks.	Here,	we	are	introduced	to	the	fundamentals	of	coding	in	a	set	of	over	a	hundred	
tutorials	and	activities	created	by	computer	science	specialists.	English	teachers	should	
be	 able	 to	 realize	 the	 potential	 in	 working	with	 their	 students,	 not	 only	 in	 using	 the	
language	in	the	modules	themselves,	but	in	talking	in	class	around	the	content	of	these	
tutorials.	

As	given	at	https://code.org/hourofcode/overview,	these	tutorials	are:	
• Minecraft	–	Program	animals	and	other	Minecraft	creatures	in	your	own	version	of
Minecraft.

https://code.org/
https://studio.code.org/courses
https://code.org/hourofcode/overview

TESL-EJ	21.2,	August	2017	 Stevens & Verschoor/Internet 10	

• Star	Wars	–	Learn	 to	program	droids,	and	create	your	own	Star	Wars	game	 in	a
galaxy	far,	far	away.

• Frozen	–	Use	code	to	join	Anna	and	Elsa	as	they	explore	the	magic	and	beauty	of	ice.

• Sports	–	Make	a	basketball	game	or	mix	and	match	across	sports.

• Flappy	Code	–	Wanna	write	your	own	game	in	less	than	10	minutes?	Try	our	Flappy
Code	tutorial!

• Classic	Maze	–	Try	the	basics	of	computer	science.	Millions	have	given	it	a	shot.

• Infinity	Play	Lab	–	Use	Play	Lab	to	create	a	story	or	game	starring	Disney	Infinity
characters.

• Play	Lab	–	Create	a	story	or	make	a	game	with	Play	Lab!

• Artist	–	Draw	cool	pictures	and	designs	with	the	Artist!

• Text	Compression	–	In	this	lesson,	students	will	use	the	Text	Compression	Widget	to
compress	text	by	substituting	patterns	with	symbols.

• Conditionals	 –	 Learn	 about	 algorithms	 and	 conditional	 statements	 in	 this
“unplugged”	activity	using	a	deck	of	cards.

Most	of	these	modules	are	broken	down	into	10	or	20	puzzles.	Students	are	not	writing	
down	 code.	 They	 are	 using	 Blockly	 as	 a	 visual	 programming	 language,	 to	 tell	 the	
computer	 in	 plain	 English	 what	 to	 do.	 Students	 must	 drag	 and	 drop	 the	 Blockly	
directions	to	make	a	game.	The	directions	with	Blockly	look	like	this:	

“move forward”
“turn left”
“turn right”

Javascript	is	generated	under	these	blocks.	Translated	into	code,	it	looks	something	like:	
moveForward();
turnLeft();
turnRight();

ESL	teachers	should	review	with	students	the	specific	vocabulary	of	each	game	before	
working	with	 Code.org;	 for	 example,	 “flap”,	 “when	 clicked”,	 “play	wing	 sound”,	 etc.	 A	
simple	way	to	get	started	is	to	teach	the	Blockly	directions	needed.	
Teachers	 can	 explore	 more	 tutorials	 at	https://code.org/learn	or	 even	 explore	 the	
possibility	of	introducing	robotics	at	https://code.org/learn/robotics.	

Code	Club	
If	you	teach	children	9	to	13,	you	can	set	them	up	in	their	own	Code	Club.	Code	Club	was	
designed	to	offer	weekly	extra-curricular	coding	specifically	for	this	age	group.	No	prior	
coding	 knowledge	 is	 needed	 to	 start	 or	 to	 join	 the	 clubs.	 Students	 can	 learn	 how	 to	
create	games,	websites	and	animations	using	Scratch,	HTML	and	Python.	

To	create	a	Code	Club	go	to	https://www.codeclub.org.uk,	or	if	you	live	outside	the	UK	
go	 to	https://www.codeclubworld.org.	 Once	 you	 activate	 your	 account	 you	 will	 find	

https://code.org/learn
https://code.org/learn/robotics
https://www.codeclub.org.uk/
https://www.codeclubworld.org/

TESL-EJ	21.2,	August	2017	 Stevens & Verschoor/Internet 11	

step-by-step	 instructions	on	how	 to	 create	a	Code	Club,	 and	have	access	 to	 resources,	
materials	and	guidance	to	run	your	Code	Club.	
If	your	students	do	not	fall	 into	the	correct	age	brackets,	you	can	still	explore	this	site,	
and	 the	 others	 mentioned	 here,	 and	 adapt	 the	 concept	 of	 teaching	 human	 languages	
through	coding	in	a	club	setting	of	your	own	devising,	designed	to	suit	your	context.	

Scratch	and	ScratchEd	

Coding	impacts	every	career	in	the	21st-century,	and	Scratch	(https://scratch.mit.edu/)	
is	one	the	best	websites	for	beginners	to	learn	the	basics	of	coding.	Scratch	was	created	
by	the	MIT	Media	Lab	as	a	 free	programming	 language	designed	to	program	websites,	
games	and	animations.	It’s	good	for	a	range	of	classroom	activities	because	it’s	easy	to	
use,	 it	 runs	 in	a	browser,	 it’s	drag-and-drop,	and	does	not	require	students	 to	provide	
correct	syntax.	Thus	it	detracts	negligibly	from	what	Stevick	called,	“the	learning	that	is	
incidental	to	something	else	that	we	are	trying	to	do”	(1982,	p.	132).	

According	to	the	Scratch	website,	“Scratch	is	designed	especially	for	ages	8	to	16,	but	is	
used	 by	 people	 of	 all	 ages.	Millions	 of	 people	 are	 creating	 Scratch	 projects	 in	 a	wide	
variety	 of	 settings,	 including	 homes,	 schools,	 museums,	 libraries,	 and	 community	
centers”	(so	it’s	already	being	used	in	many	careers	in	the	21st	century).	And	there	is	a	
version	called	Scratch	Jr.	especially	created	for	ages	5-7	enabling	students	to	create	their	
own	 interactive	 stories	 and	 games.	 Teachers	 can	 download	 the	 guide	
at	https://www.scratchjr.org/learn/interface/	where	they	will	find	clear	instructions	on	
how	to	use	Scratch	Jr.	

Teachers	 can	 join	 the	 ScratchEd	 community	 of	 practice	
at	http://scratched.gse.harvard.edu/	to	 get	 help	 and	 share	 projects	 with	 teachers	
worldwide.	 Joining	 the	 community	 is	 free	 and	 teachers	will	 encounter	 engaging	 ideas	
introducing	how	Scratch	has	been	used	by	educators	in	different	schools.	
Teachers	 can	 also	 find	 lesson	 plans	 using	 Scratch	 at	 the	 Code.org	
website,	https://code.org/educate/curriculum/teacher-led/.	 The	 lessons	 are	 grouped	
into	 elementary	 school,	middle	 school,	 and	 high	 school	 projects,	 but	 the	 topics	might	
apply	to	all	levels,	and	even	seed	fun	projects	for	adults.	High	school	projects	listed	here	
range	 from	 a	 variety	 of	 STEM	 activities	 (e.g.,	 “Code	 and	 animate	 a	 Solar	 System	
simulation,	an	interactive	ecological	pyramid,	a	working	analog	clock”),	through	various	
oral	history	and	digital	storytelling	projects,	to	this	one:	“Your	class	will	be	be	creating	a	
‘history	 of	 computers’	 web	 page/Scratch	 project/video	 that	 we	 can	 share	 with	 the	
world.	To	make	this	web	page,	you	and	your	partner	will	do	research	and	write	about	
one	important	event	or	person	in	computer	history.”	Teachers	well-practiced	in	the	art	
of	adapting	lesson	plans	will	know	that	any	kind	of	history,	or	almost	anything	else,	can	
be	substituted	for	“computer	history”.	Teachers	of	English	to	students	of	all	ages	should	
be	able	to	find	activities	here	suitable	to	their	contexts.	
Codeacademy	

Codeacademy	is	a	website	that	provides	a	variety	of	coding	languages.	Teachers	can	find	
simple	lesson	plans	and	class	sequences	ready	to	implement	for	all	 levels.	However,	of	
all	the	sites	mentioned	here	Codeacademy	might	be	one	that	teachers	of	English	should	

https://scratch.mit.edu/
https://www.scratchjr.org/learn/interface
http://scratched.gse.harvard.edu/
https://code.org/educate/curriculum/teacher-led

TESL-EJ	21.2,	August	2017	 Stevens & Verschoor/Internet 12	

use	with	an	awareness	of	what	it	does	and	doesn’t	do.	There	is	a	balanced	review	of	it	at	
Kite	 (2017),	 who	 notes	 that	 whereas	 this	 is	 a	 good	 starting	 point	 for	 learning	
rudimentary	code	for	free,	it	has	“limited	depth”	and	it’s	directed	at	adult	learners	(e.g.,	
text-based	 descriptions,	 no	 videos	 to	 engage	 digital	 natives).	 Two	 advantages	 of	
Codeacademy	are	 that	 the	 coding	 is	 taught	 inside	 a	browser	 (avoiding	your	having	 to	
install	 the	 language	on	your	computer)	and	 that	 it	 teaches	APIs	 for	hooking	 into	apps	
such	 as	 YouTube	 and	 Twitter	 (note	 the	 digital	 storytelling	 possibilities	 there),	 but	
Scratch	 works	 inherently	 inside	 a	 browser	 and	 you	 might	 not	 want	 to	 go	 as	 far	 as	
working	with	APIs	if	your	subject	is	English.	

Whereas	 the	CLIL	approach	 to	 learning	English	while	 learning	programming	seems	 to	
have	 worked	 with	 Omid	 (2014),	 according	 to	 Hughes	 (2015),	 “The	 reason	 why	
Codecademy	 is	 successful	 is	 because	 it	 takes	 coding,	 and	 transforms	 it	 into	 addictive	
bite-sized	pieces	that	are	easy	to	accomplish,	and	offer	instantaneous	feedback.	It’s	the	
candy	 of	 coding.”	 Whereas	 they	 have	 introduced	 many	 to	 the	 fundamentals	 of	
programming	and	have	helped	launch	countless	careers,	“their	product	–	and	to	be	more	
precise,	 their	 teaching	methods	–	 leave	a	 lot	 to	be	desired,	 and	are	 leaving	 thousands	
frustrated,	 and	unsure	of	where	 to	progress	with	 their	 formative	development	 skills.”	
Furthermore,	 these	 exercises	 do	not	 sufficiently	 recapitulate	 previously	 learned	 items	
(“blink,	and	you’ll	miss	it,”	as	he	puts	it),	nor	do	they	help	users	apply	what	they	learn	to	
practical	 projects.	 In	 particular,	Hughes	 faults	 them	on	producing	 exercises	 in	 chunks	
that	 do	 not	 teach	 the	mindset	 of	 programming.	 They	 teach	 syntax,	 but	 not	 the	 art	 of	
programming,	and	 it’s	 the	art,	 the	 inculcation	of	a	way	of	 thinking	about	approaching,	
troubleshooting,	and	solving	problems,	that	most	concerns	21st	century	educators.	
Although	 a	 Google	 search	 trawls	 up	 a	 surprising	 number	 of	 similar	 perspectives	 on	
Codeacademy,	 there	are	also	 those	who	have	 found	 it	 to	be	a	useful	experience;	Omid	
(2014)	for	one,	and	also	Rushkoff	(2012)	who	says:	

To	 build	my	 own	 code	 literacy,	 I	 decided	 to	 take	 free	 classes	 through	 the	 online	
website	 Codecademy.com,	 and	 ended	 up	 liking	 it	 so	much	 that	 I’m	 now	working	
with	them	to	provide	free	courses	for	kids	to	learn	to	code.	The	lessons	I’ve	learned	
along	 the	 way	 are	 of	 value	 to	 parents	 and	 teachers	 looking	 to	 grow	more	 code	
literate	young	people.	

When	Rushkoff	says	he	is	now	“working	with”	Codeacademy,	he	means	he	has	become	a	
“resident	 Digital	 Literacy	 Advocate	 or	 ‘Code	 Evangelist’	 at	 Codecademy”	
(https://www.edutopia.org/user/202975)	 but	 there	 are	 many	 proponents	 of	
Codeacademy	who	extol	its	virtues	because	it’s	free	and	it	teaches	coding.	It’s	probably	
worth	looking	into,	if	only	to	get	a	better	grounding	in	coding	as	a	teacher,	as	you	work	
through	the	other	sites	with	your	students.	

Conclusion	
Rushkoff	 (2012)	 makes	 some	 compelling	 points	 in	 his	 article	 aptly	 entitled	 “Code	
literacy:	 A	 21st	 century	 requirement.”	 Using	 the	 example	 of	 Facebook,	 he	 notes	 that	
whereas	 we	 (over	 2	 billion	 of	 us,	 including	 teachers	 and	 students)	 use	 the	 site	
superficially	 to	 share	 the	 minutiae	 of	 our	 lives	 with	 friends,	 the	 deeper	 purpose	 of	
Facebook	 is	 to	 sell	 data	 points	 on	 those	 minutiae	 to	 high	 bidders,	 and	 that	 an	

https://www.edutopia.org/user/202975

TESL-EJ	21.2,	August	2017	 Stevens & Verschoor/Internet 13	

understanding	 of	 the	 deeper	 mechanics	 of	 how	 our	 digital	 world	 works	 is	 a	 critical	
literacy	 skill	 for	 the	 21st	 century.	 Learning	 to	 code,	 he	 says,	 is	 one	way	 that	 we	 can	
regain	some	control	over	our	world.	Program	or	be	programmed.	

Learning	human	languages	is	similarly	empowering,	as	is	self-evident	in	the	number	of	
people	 willing	 to	 employ	 teachers	 to	 help	 them	 learn	 them.	 Learning	 coding	 in	 the	
context	 of	 language	 development	 should	 be	 doubly	 empowering,	 especially	 as	
development	of	either,	even	on	 its	own,	or	 ideally	both,	enables	critical	 thinking	skills	
and	leverages	opportunities	in	an	uncertain	future.	As	Rushkin	says,	“Code	literate	kids	
stop	accepting	the	applications	and	websites	they	use	at	face	value,	and	begin	to	engage	
critically	 and	 purposefully	 with	 them	 instead.	 Otherwise,	 they	 may	 as	 well	 be	 at	 the	
circus	or	a	magic	show.”	

Sometimes	we	as	 teachers	 look	out	at	our	students	peering	at	 their	hand-held	devices	
and	wonder	if	they	are	using	them	productively	or	distractingly.	Often,	it’s	apparent	that	
the	 latter	 is	 the	 case.	 Engaging	 our	 students	 is	 our	 key	 to	 success,	 for	 then	 we	 can	
discourse	 with	 them	 and	 have	 them	 describe	 their	 adventures	 on	 their	 learning	
journeys,	 and	how	 these	 relate	 to	 their	 present	 (perhaps	 the	present	 class)	 and	 long-
term	goals.	But	we	ourselves	must	be	worthy	of	our	side	of	the	discourse,	which	means	
we	have	to	keep	notching	our	own	skills	upward	in	order	to	bootstrap	our	students,	or	
to	 appreciate	when	 they	 bootstrap	 us,	 which	 can	 be	 the	 case	when	 teachers	 learn	 to	
leverage	into	their	teaching	style	“the	vulnerability	of	not	knowing”	Brennan	(2014).	
We	 are	 all	 now	 temporally	 and	 firmly	 ensconced	 in	 the	 21st	 century.	We	 need	 to	 be	
focused	now	on	moving	ourselves	and	our	students	toward	the	22nd.	It	is	incumbent	on	
us	all	to	be	coming	to	grips	with	the	literacies	and	skill	sets	that	will	improve	likelihood	
of	success	and	even	survival	as	we	prepare	to	adapt	to	the	world	unseen	not	far	around	
the	corner.	
Note	

[1] The	quote	above	is	taken	from	Scott,	2015,	p.3,	but	the	URL	given	in	her	references	is
incorrect.	 The	 correct	 URL	 is	 given	 under	 Wagner	 (2010)	 in	 the	 Reference	 section
below.	Nearly	identical	points	made	by	Tony	Wagner	were	recorded	in	American	Youth
Policy	 Forum	 (2010)	 and	 are	 reiterated	 on	 Wagner’s	 website
at		http://www.tonywagner.com/7-survival-skills/).

References	

American	Youth	Policy	Forum.	(2010).	Preparing	students	for	the	rapidly	changing	world:	
Implications	for	instruction	and	assessment	(Forum	2).	American	Youth	Policy	Forum.	
Available:	http://www.aypf.org/resources/preparing-students-for-the-rapidly-changing-
world-implications-for-instruction-and-assessment-forum-2/.	

Baltra,	A.	(1984).	An	EFL	classroom	in	a	Mystery	House.	TESOL	Newsletter	18	(6):	15.	

Berdik,	C.	(2015).	Reading,	writing,	’rithmetic,	’rogramming:	Should	every	school	class	be	a	
computer	coding	class?	Slate	http://www.slate.com/articles/technology/future_tense/	
2015/04/building_coding_into_art_english_and_history_classes.html.	

http://www.tonywagner.com/7-survival-skills
http://www.aypf.org/resources/preparing-students-for-the-rapidly-changing-world-implications-for-instruction-and-assessment-forum-2/
http://www.aypf.org/resources/preparing-students-for-the-rapidly-changing-world-implications-for-instruction-and-assessment-forum-2/
http://www.slate.com/articles/technology/future_tense/ 2015/04/building_coding_into_art_english_and_history_classes.html
http://www.slate.com/articles/technology/future_tense/ 2015/04/building_coding_into_art_english_and_history_classes.html

TESL-EJ	21.2,	August	2017	 Stevens & Verschoor/Internet 14	

Bradley,	L.	(2016).	Coding	in	English	class?	YES!	and	not	just	an	#hourofcode,	but	a	
#monthofcode!	Laura	Bradley.	Available:	https://laurabradley.me/2016/12/15/coding-in-
english-class-yes-and-not-just-an-hourofcode-but-a-monthofcode/.	

Bradley.	L.	(2017).	Coding	in	English	class?	Yes!	And	in	your	class,	too!	KQED	Education.	
Available:	https://ww2.kqed.org/education/2017/06/22/coding-in-english-class-yes-and-
in-your-class-too/.	

Brennan,	K.	(2014).	Getting	unstuck:	Karen	Brennan’s	‘8	for	8’.	HarvardEducation	YouTube	
channel.	Available:	https://youtu.be/c_AdWB1GkRw.	

Brown,	J.	(2016).	Coding	in	English	class	–	Perfect	pair.	Current	and	Cool.	
http://currentandcool.blogspot.ae/2016/01/coding-in-english-class-perfect-pair.html.	

Cohen,	A.	(2017).	Teaching	ESL	through	coding.	LinkedIn	Pulse.		
https://www.linkedin.com/pulse/teaching-esl-through-coding-alan-cohen.	

Conference	Board,	Corporate	Voices	for	Working	Families,	the	Partnership	for	21st	Century	
Skills	and	the	Society	for	Human	Resource	Management.	(2006).	Are	they	really	ready	to	
work?	Employers’	perspectives	on	the	basic	knowledge	and	applied	skills	of	new	entrants	to	
the	21st	century	U.S.	workforce.	P21	Partnership	for	21st	Century	Learning.	
Available:	http://www.p21.org/storage/documents/FINAL_REPORT_PDF09-29-06.pdf.	

Dudeney,	G.,	Hockly,	N.,	&	Pegrum,	M.	(2013).	Digital	literacies.	Harlow:	Pearson	(electronic).	

Hughes,	M.	(2015).	4	reasons	why	you	shouldn’t	learn	to	code	from	Codecademy.	MUD.	
Available:	http://www.makeuseof.com/tag/4-reasons-shouldnt-learn-code-codeacademy/.	

Kite,	C.	et	al.	(2017).	Codeacademy	review.	CodeConquest.	
Available:	http://www.codeconquest.com/reviews/codecademy/.	

Missio,	E.	(2015).	What	kids	learn	when	they	play	Minecraft.	Parents.	Available:	
http://www.cbc.ca/parents/learning/view/what-kids-learn-when-they-play-minecraft.	

Morais,	B.	(2015).	Can	an	English	teacher	learn	to	code?	New	Yorker.	
http://www.newyorker.com/tech/elements/can-an-english-teacher-learn-to-code.	

Morrison,	N.	(2013).	Teach	kids	how	to	code	and	you	give	them	a	skill	for	
life.	Forbes.	https://www.forbes.com/sites/nickmorrison/2013/12/27/teach-kids-how-to-
code-and-you-give-them-a-skill-for-life/#768b91d265d2.	

Omid.	(2014).	Learning	English	by	learning	
programming.	Italki.	https://www.italki.com/article/281/learning-english-by-learning-
programming.	

Patrascu,	M.	(2016).	Using	Scratch	with	Minecraft	&	Scriptcraft	–	Step	by	step	
instructions.	Kids	love	to	code.	Available:	https://kidslovetocode.wordpress.com/	
2016/09/27/using-scratch-with-minecraft-scriptcraft-step-by-step-instructions/.	

Rich,	E.	(2010).	How	do	you	define	21st-century	learning?	One	question.	Eleven	
answers.	EdWeek.	Available:	http://www.edweek.org/tsb/articles/2010/10/12/	
01panel.h04.html.	

Rushkoff,	D.	(2012).	Code	literacy:	A	21st	century	requirement.	Edutopia.	
Available:	https://www.edutopia.org/blog/code-literacy-21st-century-requirement-
douglas-rushkoff.	

https://laurabradley.me/2016/12/15/coding-in-english-class-yes-and-not-just-an-hourofcode-but-a-monthofcode/
https://laurabradley.me/2016/12/15/coding-in-english-class-yes-and-not-just-an-hourofcode-but-a-monthofcode/
https://ww2.kqed.org/education/2017/06/22/coding-in-english-class-yes-and-in-your-class-too/
https://ww2.kqed.org/education/2017/06/22/coding-in-english-class-yes-and-in-your-class-too/
https://youtu.be/c_AdWB1GkRw
http://currentandcool.blogspot.ae/2016/01/coding-in-english-class-perfect-pair.html
https://www.linkedin.com/pulse/teaching-esl-through-coding-alan-cohen
http://www.p21.org/storage/documents/FINAL_REPORT_PDF09-29-06.pdf
http://www.makeuseof.com/tag/4-reasons-shouldnt-learn-code-codeacademy/
http://www.codeconquest.com/reviews/codecademy/
http://www.cbc.ca/parents/learning/view/what-kids-learn-when-they-play-minecraft
http://www.newyorker.com/tech/elements/can-an-english-teacher-learn-to-code
https://www.forbes.com/sites/nickmorrison/2013/12/27/teach-kids-how-to-code-and-you-give-them-a-skill-for-life/
https://www.forbes.com/sites/nickmorrison/2013/12/27/teach-kids-how-to-code-and-you-give-them-a-skill-for-life/
https://www.italki.com/article/281/learning-english-by-learning-programming
https://www.italki.com/article/281/learning-english-by-learning-programming
https://kidslovetocode.wordpress.com/ 2016/09/27/using-scratch-with-minecraft-scriptcraft-step-by-step-instructions/
https://kidslovetocode.wordpress.com/ 2016/09/27/using-scratch-with-minecraft-scriptcraft-step-by-step-instructions/
http://www.edweek.org/tsb/articles/2010/10/12/ 01panel.h04.html
http://www.edweek.org/tsb/articles/2010/10/12/ 01panel.h04.html
https://www.edutopia.org/blog/code-literacy-21st-century-requirement-douglas-rushkoff
https://www.edutopia.org/blog/code-literacy-21st-century-requirement-douglas-rushkoff

TESL-EJ	21.2,	August	2017	 Stevens & Verschoor/Internet 15	

Scott,	C.	(2015).	The	futures	of	learning	2:	What	kind	of	learning	for	the	21st	
century?	UNESCO	Education	research	and	foresight	working	papers.	
Available:	http://unesdoc.unesco.org/images/0024/002429/242996E.pdf.	

Siskin,	C.	(2017).	BrimmEng.	Edvista.	Available:	http://www.edvista.com/claire/apps/	
brimmeng.html.	

Smolčec,	M.,	Smolčec,	F.	&	Stevens,	V.	(2014).	Using	Minecraft	for	learning	English.	TESL-EJ,	
18(2),1-15.	Available:	http://www.tesl-ej.org/pdf/ej70/int.pdf.	

Stevens,	V.	(1985).	You’d	be	surprised	at	how	much	public	domain	software	you	can	adapt	
to	ESL	and	language	learning.	TESL	Reporter	18,	1:8-15.	

Stevens,	V.	(2016).	BrimEng:	Carry	English	in	your	pocket!	LiveCode	app	development	from	
Bangladesh.	Learning2gether.	Available:	https://learning2gether.net/2016/06/26/carry-
english-in-your-pocket-brimeng-livecode-app-development-from-bangladesh/.	

Stevens,	V.	(2017).	Gamifying	teacher	professional	development	through	Minecraft	MOOC.	
In	Zoghbor,	W.,	Coombe,	C.,	Al	Alami,	S.	&	Abu-Rmaileh,	S.	(Eds.).	Language	culture	
communication:	Transformations	in	intercultural	contexts.	The	proceedings	of	the	22nd	TESOL	
Arabia	Conference	(pp.	75-92).	Dubai:	TESOL	Arabia.		

Stevick,	E.	(1982).	Teaching	and	learning	languages.	New	York:	Cambridge	University	Press.	

Thoughtful	Learning	team	of	teachers,	writers,	and	designers.	(2017).	What	are	21st	century	
skills?	Thoughtful	Learning.	Available:	https://k12.thoughtfullearning.com/FAQ/what-are-
21st-century-skills.	

Wagner,	T.	2010.	Overcoming	the	global	achievement	gap	(slides).	American	Youth	Policy	
Forum.	Available:	http://www.aypf.org/documents/Wagner%20Slides%20-
%20global%20achievement%20gap%20brief%205-10.pdf	

World	Economic	Forum	in	collaboration	with	the	Boston	Consulting	Group.	(2015).	New	
vision	for	education:	Unlocking	the	potential	of	technology.	World	Economic	Forum.	
Available:	http://www3.weforum.org/docs/WEFUSA_NewVisionforEducation_Report2015.
pdf.	

©	Copyright	rests	with	authors.	Please	cite	TESL-EJ	appropriately.	

http://unesdoc.unesco.org/images/0024/002429/242996E.pdf
http://www.edvista.com/claire/apps/ brimmeng.html
http://www.edvista.com/claire/apps/ brimmeng.html
http://www.tesl-ej.org/pdf/ej70/int.pdf
https://learning2gether.net/2016/06/26/carry-english-in-your-pocket-brimeng-livecode-app-development-from-bangladesh/
https://learning2gether.net/2016/06/26/carry-english-in-your-pocket-brimeng-livecode-app-development-from-bangladesh/
https://k12.thoughtfullearning.com/FAQ/what-are-21st-century-skills
https://k12.thoughtfullearning.com/FAQ/what-are-21st-century-skills
http://www.aypf.org/documents/Wagner Slides - global achievement gap brief 5-10.pdf
http://www.aypf.org/documents/Wagner Slides - global achievement gap brief 5-10.pdf
http://www3.weforum.org/docs/WEFUSA_NewVisionforEducation_Report2015.pdf
http://www3.weforum.org/docs/WEFUSA_NewVisionforEducation_Report2015.pdf

	footnote1

